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Abstract— Correlation filters (CFs) have shown excellent per-
formance in unmanned aerial vehicle (UAV) tracking scenarios
due to their high computational efficiency. During the UAV
tracking process, viewpoint variations are usually accompa-
nied by changes in the object and background appearance,
which poses a unique challenge to CF-based trackers. Since
the appearance is gradually changing over time, an ideal
tracker can not only forward predict the object position but
also backtrack to locate its position in the previous frame.
There exist response-based errors in the reversibility of the
tracking process containing the information on the changes in
appearance. However, some existing methods do not consider
the forward and backward errors based on while using only
the current training sample to learn the filter. For other
ones, the applicants of considerable historical training samples
impose a computational burden on the UAV. In this work, a
novel bidirectional incongruity-aware correlation filter (BiCF)
is proposed. By integrating the response-based bidirectional
incongruity error into the CF, BiCF can efficiently learn the
changes in appearance and suppress the inconsistent error.
Extensive experiments on 243 challenging sequences from three
UAV datasets (UAV123, UAVDT, and DTB70) are conducted to
demonstrate that BiCF favorably outperforms other 25 state-
of-the-art trackers and achieves a real-time speed of 45.4 FPS
on a single CPU, which can be applied in UAV efficiently.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been widely used
recently, especially those equipped with intelligent vision-
based technology. The UAV senses the environment through
the visual system on the onboard computer to detect and
track the specified target autonomously. In the literature,
UAV tracking has been applied for human-computer interac-
tion [1], autonomous landing [2], and object following [3].

Although many visual tracking methods have been pro-
posed in recent years, there remain considerable challenges
in visual object tracking, especially in UAV tracking sce-
narios. Factors that have a significant impact on UAV
tracking include object deformation, the fast motion of the
UAV/object, a wide range of viewpoint changes, to name
a few [4]. Comparing with general tracking cases, tracking
the object from the UAV perspective faces more particu-
lar difficulties. Currently, the correlation filter (CF)-based
tracking method has received widespread attention with high
computational efficiency, which is suitable for UAV real-time
tracking applications. This method learns a CF-based tracker
that can distinguish the specified target from the background
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Fig. 1. Comparison between discriminative correlation filter (DCF) and the
proposed BiCF. During the filter training phase in frame #k, BiCF uses both
the sample information and filter of the previous frame to help construct the
bidirectional incongruity error, aiming to utilize the inter-frame information
better. The DCF only uses the sample information of the current frame,
which makes the filter susceptible to the appearance changes.

and update the appearance model online. All computation
benefits from the characteristic of the CF-based method
and can be performed efficiently in the Fourier domain.
However, the change of the UAV viewpoint usually makes
the appearance model susceptible to interference. The change
in CF’s response to the object reflects the information about
the object appearance changes, which is ignored by most
traditional CF-based methods.

In UAV tracking scenarios, viewpoint changes often oc-
cur. To overcome similar challenges and improve the UAV
tracking performance in robustness, using powerful features
are essential for the object expression. Moreover, in the case
of limited computing resources of the UAV, we consider
the information about variations in the object/background
appearance between frames, instead of only using the current
sample for filter learning, as shown in Fig. 1.

In this work, multiple features are applied to express
the object/background appearance including histogram of
oriented gradient (HOG) [5] and color names (CN) [6].
Moreover, we dissect the tracking process with a view of
forward detection and backward relocation. It can be found
that there exists error reflecting the same appearance changes
in the forward and backward tracking process. The error is
referred to as bidirectional incongruity error in this work,
and it can be measured by the response maps. By suppressing
this response-based error, the filter can be more robust to the
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appearance variations. Therefore, a bidirectional incongruity-
aware CF-based tracker (BiCF) is proposed in this work,
which incorporates this error into the CF-based framework.
The contributions are summarized as follows:

• A novel tracker is proposed, which can learn the ob-
ject/background appearance changes more efficiently.
By using inter-frame information to analyze and re-
solve the response-based bidirectional incongruity error,
it helps to encode the filter with high accuracy and
robustness. Moreover, multiple features (HOG and CN)
are used to assist in the object/background expression.

• Considerable experiments on three UAV datasets with
243 challenging image sequences are conducted to
verify the performance of the proposed BiCF tracker.
Experimental results demonstrate the BiCF tracker per-
forms favorably comparing with other 25 state-of-the-art
trackers in accuracy, robustness, and efficiency.

II. RELATED WORKS

CF-based trackers have achieved significant progress re-
cently. In [7], the minimum output sum of squared error,
i.e., MOSSE tracker, was applied to learn a correlation filter
to distinguish objects. Upon the MOSSE method, several
works [8], [9] were proposed and show notable improvement
by using multi-channel features in CF learning. To better
encode the tracking model, J. F. Henriques et al. utilized
kernel tricks to improve CF-based tracking performance [10].
The SAMF [11], DSST [12], and IBCCF [13] trackers were
proposed to address the adaptive scale change problem. The
BACF [14], SRDCF [15], and BEVT [16] trackers were
designed to alleviate the boundary effects.

During the tracking process, the trackers need to maintain
a robust appearance and filter model as the object and
background changes over time. It is a challenge to CF-based
trackers due to the limited training samples. KCF [10] was
provided with some memory by updating both appearance
and filter model, which makes the tracker more robust to
object appearance variations. In [15], [17], all historical
training samples are considered for current filter learning,
but better precision is achieved at the expense of a high
computational burden. To better use the inter-frame infor-
mation and reduce the training set size, M. Danelljan et
al. applied the Gaussian mixture model to generate sample
space with a smaller number of samples [18]. F. Li et al.
proposed the temporal regularization to learn and update the
CF simultaneously without using the large training set [19].
The temporal regularization makes the filter similar to the
previous one. However, the changes within two consecutive
frames are not only reflected in the filter but also reflected in
the variations of the appearance. In [20], the responses within
two consecutive frames were used for aberrance repression,
which only focused on the forward tracking process.

Therefore, we analyze the tracking process from the for-
ward and backward perspective and propose the bidirectional
incongruity error. By incorporating the error into the CF
learning, the BiCF tracker is presented to utilize the inter-
frame information more comprehensively and efficiently.

III. PROPOSED METHOD

A. Bidirectional incongruity modeling
Figure 2 illustrates the bidirectional incongruity error,

which contains the forward tracking error ∆FR and histor-
ical backtrace error ∆BR. Given the frame #k, we extract
the sample feature x and train the filter w with the label
function y [10]. It is expected that the response Rx

w to
the current feature x is close to the desirable response
distribution y. Intuitively, the current response Rx

w should be
more consistent with the detection response Rx

wp obtained
by the previous filter wp, which is applied to search the
object position in the frame #k. However, in actual situation,
the responses both Rx

w and Rx
wp tend to be different due to

viewpoint variations, illumination changes, and other factors.
In this work, the error between these two responses is defined
as the forward tracking error ∆FR:

∆FR = Rx
w −Rx

wp . (1)

Moreover, an ideal filter can trackback to the object’s
original position. That is, the backtrace response Rxp

w of
the filter w to the feature xp is similar to the response
Rxp

wp . However, there still exists a difference between the
two responses in real-world scenarios, which is denoted as
the backward trace error ∆BR:

∆BR = Rxp

wp −Rxp

w . (2)

By analyzing the tracking process from different angles, it
can be found that there are inconsistent errors for the same
appearance changes in consecutive frames. In other words,
the forward and backward tracking errors are consistent in
theory, but in real scenes, there exists a difference in the
reversibility of the tracking process. Thus the difference
between the two errors (∆FR and ∆BR) reflects the bidirec-
tional incongruity during the tracking process and contains
information about the variations in appearance. Therefore,
the bidirectional incongruity error ε is introduced so that the
filter can sense the changes within two consecutive frames:

ε = ‖∆FR−∆BR‖22 . (3)

B. Objective function of BiCF
In this work, the bidirectional incongruity error is incor-

porated into the CF learning. The optimization problem are
formulated as:

W = arg min
W
E(W;X,Wp,Xp) , (4)

where W = [w1, . . . ,wD] and X = [x1, . . . ,xD] respec-
tively denotes the filter and feature with all D channels con-
catenated together in the k-th frame. Wp = [wp

1, . . . ,w
p
D]

and Xp = [xp1, . . . ,x
p
D] respectively represents the filter

and feature obtained from the previous training sample, i.e.,
the sample in (k − 1)-th frame. For clarity, xd ∈ RN×1

is assumed as a one-dimensional signal of length N in
the following derivation, which can be directly general-
ized to the two-dimensional image. The objective function
E(W;X,Wp,Xp) is defined as follows:

E(W;X,Wp,Xp) = E1(W;X) + E2(W;X,Wp,Xp) . (5)
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Fig. 2. A flowchart of the proposed BiCF tracker. In the forward phase, the existence of the forward tracking error is due to the difference between the
current and detected responses, Rx

w and Rx
wp . In the backward phase, the tracking error is also caused by the inconsistency of the responses. For the same

appearance changes in consecutive frames, the forward and backward tracking errors are consistent in theory, but in real scenes, there exists a difference
in the reversibility of the tracking process. Therefore, the bidirectional incongruity during the tracking process is reflected by the two errors, i.e., ∆FR
and ∆BR. Note that the channel index (·)d is ignored here for clarity of the notations.

The first term E1 is the error of the ridge regression
between the label function y and the response reflected by
the feature X extracted from the current training sample:

E1(W;X) =

D∑
d=1

∥∥y −Rxd
wd

∥∥2
2

+ λ

D∑
d=1

‖s�wd‖22 , (6)

where s is the spatial regularizer [15] and λ denotes the
regularization parameter. The response in the d-th channel
of the filter wd to the feature xd is computed by:

Rxd
wd

= wd ? xd , (7)

where ? denotes circular correlation operator.
The second term E2 introduces the bidirectional incon-

gruity error ε to help construct the filter that can learn the
changes in successive frames:

E2(W;X,Wp,Xp) = γ

D∑
d=1

εd , (8)

where γ is a regularization term. εd represents the bidi-
rectional inconsistency error in d-th channel and can be
calculated by:

εd = ‖∆FRd −∆BRd‖22

=
∥∥∥(Rxd

wd
−Rxd

wp
d
)− (R

xp
d

wp
d
−R

xp
d

wd)
∥∥∥2
2

= ‖(wd ? xd −wp
d ? xd)− (wp

d ? x
p
d −wd ? x

p
d)‖

2

2
.
(9)

Therefore E2 is reformulated as:

E2(W;X,Wp,Xp) = γ
D∑

d=1

‖(wd −wp
d) ? (xd + xp

d)‖
2
2
. (10)

Note that E(W;X,Wp,Xp) can be decomposed into D
error terms Ed (d = 1, . . . , D) for optimization, since the

filter is trained independently on each channel. In this work,
the d-th channel is chosen for the following model derivation.

C. BiCF learning

To obtain the optimal filter wd minimizing Ed, we intro-
duce an auxiliary variable hd ∈ RN×1 and requiring wd =
hd so that the optimization problem can be decomposed into
several subproblems and solved iteratively by the ADMM
technique [21]. Thus Ed can be equivalently written as the
equality constraint form:

Ed(wd,hd) = ‖y −wd ? xd‖22 + λ ‖Shd‖22
+ γ ‖(wd −wp

d) ? (xd + xpd)‖
2

2
,

s.t. wd = hd, d = 1, . . . , D

(11)

where S = diag(s) denotes the diagonal matrix. For compu-
tational efficiency, Eq. (11) can be expressed in the Fourier
domain by Parseval’s theorem:

Ed(ŵd,hd) = ‖ŷ − ŵ∗
d � x̂d‖22 + λ ‖Shd‖22

+ γ
∥∥(ŵ∗

d − ŵp∗
d )� (x̂d + x̂pd)

∥∥2
2
,

s.t. ŵd =
√
NFhd, d = 1, . . . , D

(12)

where � stands for the Hadamard product. The superscriptˆ
and ∗ is the discrete Fourier transform (DFT) of a signal and
the conjugate of a complex vector, respectively. F ∈ CN×N

is the DFT matrix that transforms a signal v ∈ RN×1 into
the frequency domain, such that v̂ =

√
NFv. Eq. (12) can

be formulated as the augmented Lagrangian form:

L(ŵd,hd, ζ̂d) = Ed(ŵd,hd) + µ

∥∥∥∥ŵd −
√
NFhd +

1

µ
ζ̂d

∥∥∥∥2
2

,

(13)

where ζ̂d ∈ CN×1 is the Lagrangian multiplier in the d-th
channel and µ denotes the penalty factor.
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Then the ADMM technique [21] is applied to alternatively
solve the following subproblems. The subproblems for solv-
ing ŵd and hd both have closed-form solutions.

1) Subproblem ŵd: If hd and ζ̂d are fixed in Eq. (13),
the optimal ŵ(i+1)

d can be obtained by solving Eq. (14).

ŵ
(i+1)
d = arg min

ŵd

{
‖ŷ − ŵ∗

d � x̂d‖22

+ γ
∥∥(ŵ∗

d − ŵp∗
d )� (x̂d + x̂pd)

∥∥2
2

+ µ

∥∥∥∥ŵd −
√
NFhd +

1

µ
ζ̂d

∥∥∥∥2
2

}
.

(14)

By taking the derivative with respect to ŵ∗
d to zero, we

can get the solution for ŵ(i+1)
d :

ŵ
(i+1)
d =

x̂d � ŷ∗ + γ(x̂d + x̂p
d)� (x̂∗

d + x̂p∗
d )� ŵp

d + µĥd − ζ̂d
x̂d � x̂∗

d + γ(x̂d + x̂p
d)� (x̂∗

d + x̂p∗
d ) + µ

,

(15)

where the fraction operator denotes element-wise division.
2) Subproblem hd: If ŵd and ζ̂d are given in Eq. (13),

the optimal h(i+1)
d can be solved by Eq. (16).

h
(i+1)
d =argmin

hd

{
λ ‖Shd‖22 + µ

∥∥∥∥ŵd −
√
NFhd +

1

µ
ζ̂d

∥∥∥∥2
2

}
.

(16)

The solution of h
(i+1)
d can be easily achieved by setting

the derivation with respect to hd to zero:

h
(i+1)
d =

F−1(µŵd + ζ̂d)
λ
N (s� s∗) + µ

. (17)

3) Updating Lagrangian multiplier ζ̂d: The Lagrangian
multiplier ζ̂d is updated by:

ζ̂d
(i+1)

= ζ̂d
(i)

+ µ
(
ŵ

(i+1)
d − ĥ

(i+1)
d

)
, (18)

where ĥ
(i+1)
d =

√
NFh

(i+1)
d . Within the i-th ADMM

iteration, the factor µ is commonly updated as follows [21]:

µ(i+1) = min(µmax, βµ
(i)) . (19)

Algorithm 1: BiCF tracker
Input: Image: Ik .

The previous filter: wp
d .

The feature in frame #k − 1: xp
d.

The spatial regularizer weights: s.
Output: The current filter wd in the k-th frame.

1 Extract features xd from Ik .
2 Introduce the auxiliary variable hd and build the equality

constraint form Eq. (11).
3 Transform Eq. (11) to Eq. (12) by Parseval’s theorem.

4 Initialize variables ŵ
(0)
d , h(0)

d , and ζ̂d
(0)

.
5 for ADMM iteration i = 1 to end do
6 Solve subproblem ŵ

(i+1)
d by Eq. (15).

7 Solve subproblem h
(i+1)
d by Eq. (17).

8 Update Lagrangian multiplier ζ̂d
(i+1)

by Eq. (18).
9 Update the penalty factor µ(i+1) by Eq. (19).

10 end
11 Use Eq. (20) to update the appearance model.

Moreover, an online adaptive scheme is utilized to improve
the filter’s robustness, which can be formulated as:

x̂d,model = (1− η)x̂pd,model + ηx̂d , (20)

where x̂d,model and x̂pd,model denotes the appearance model
at the current frame and the previous frame, respectively. η
is the online adaptation rate. The BiCF learning in the d-th
channel in frame #k can be summarized in Algorithm 1.

IV. EXPERIMENTS

In this section, the proposed BiCF tracker is evaluated
by considerable experiments on 243 challenging UAV image
sequences from three datasets, which are widely used in
UAV tracking, including UAV123@10fps [4], DTB70 [22],
and UAVDT [23] datasets. The results are compared with
25 state-of-the-art tracking methods, such as KCF [10],
DSST [12], SAMF [11], CF2 [24], C-COT [17], SRD-
CFdecon [25], Staple [9], BACF [14], CoKCF [26], CSR-
DCF [27], ECO-HC, ECO [18], fDSST [28], IBCCF [13],
MCPF [29], SRDCF [15], Staple CA [30], KCC [31],
MCCT-H [32], MCCT [32], STRCF, DeepSTRCF [19],
TADT [33], UDT, and UDT+ [34].

A. Experimental setups

1) Evaluation metrics: The experiments are based on
the one-pass evaluation, where two metrics including center
location error (CLE) and success rate (SR) are used to
evaluate all trackers on the UAV123@10fps, DTB70, and
UAVDT datasets. CLE is used to measure the Euclidean dis-
tance between the estimated object location and the ground
truth bounding box center. The precision plot shows the
percentage of bounding boxes whose CLE is less than the
given threshold. SR is applied to measure the intersection
over union (IoU) of the estimated and the ground truth
bounding box. The success plot indicates the ratio of the
number of frames whose IoU is greater than the given
threshold to the total number of frames. According to the
common ranking metrics [4], CLE’s threshold is set to 20
pixels to rank the precision of trackers, and the area under the
curve (AUC) is applied to rank the success rate of trackers.

2) Implementation details: The proposed BiCF tracker
is implemented in MATLAB R2018a on a computer with
an i7-8700K CPU (3.7GHz) and an NVIDIA GeForce
RTX 2080 GPU. The BiCF tracker uses a combination
of hand-crafted features, including HOG [5], CN [6], and
gray-scale features, for object representation. The regu-
larization parameter λ and γ is set to 0.01 and 0.03,
respectively. As for ADMM optimization parameters, the
initial penalty factor µ, scale step β, and the maximum
value µmax are set to 100, 10, and 105, respectively.
The number of ADMM iterations is set to 4. All hyper-
parameters remain fixed for all image sequences on three
datasets. One MATLAB implementation and UAV track-
ing videos are available here: https://github.com/
vision4robotics/BiCF-Tracker and https://
youtu.be/fS12kosv37s.
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(a) UAV123@10fps dataset
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(b) DTB70 dataset
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(c) UAVDT dataset
Fig. 3. Precision and success plots of BiCF and other 14 hand-crafted feature-based trackers on three datasets.

TABLE I
THE AVERAGE TRACKING SPEED OF BICF VERSUS OTHER HAND-CRAFTED FEATURE-BASED TRACKERS ON THREE DATASETS. THE TOP 3 TRACKING

SPEED IS SHOWN IN RED, GREEN, AND BLUE FONTS. ALL RESULTS ARE GENERATED IN CPU MODE.

KCF DSST BACF SAMF Staple Staple CA SRDCF SRDCFdecon MCCT H CSR-DCF STRCF ECO-HC fDSST KCC BiCF

Avg. FPS 651.1 106.5 56.0 12.8 65.4 58.9 14.0 7.5 59.7 12.1 28.5 69.3 168.1 46.1 45.4

B. Validity analysis of regularization factor γ

To shed light the effect of the bidirectional incongruity
penalty factor γ on the overall performance, we test different
numerical values of γ on the UAVDT dataset. γ values are
set from 0 to 0.18 empirically for the trial, with a step size of
0.01. The results for precision and success rate are reported
in Fig. 4. The precision corresponding to γ = 0 is used as
the baseline, which is the black dash line in Fig. 4(a). The
performance gradually increases with the increase of γ, and
reaches the highest point (0.7164) at γ = 0.03. After that, the
precision score decreases slightly and fluctuates around the
baseline. For the success rate in Fig. 4(b), the performance
sees the trend similar to precision and achieves the best
score (0.4568) at γ = 0.03. Compared to the performance
at γ = 0, the precision and success rate obtain a gain of
0.96% and 1.06% respectively when γ = 0.03. The results
show that when γ is set in a certain range, the bidirectional
incongruity regularization term can effectively improve the
overall performance of the tracker.

C. Comparison with hand-crafted feature-based trackers

1) Overall performance comparison: The proposed BiCF
tracker is compared with other trackers using hand-crafted
features on the UAV123@10fps, DTB70, and UAVDT
datasets. Fig. 3 shows that the BiCF tracker performs signif-
icantly better than other hand-crafted feature-based trackers
on all three datasets. More specifically, the BiCF tracker
achieves the best precision score (0.662) on UAV123@10fps,

exceeding CSR-DCF (0.643) and ECO-HC (0.634) by 2.9%
and 4.4%, respectively. BiCF also achieves the best AUC
score (0.475) on UAV123@10fps, which leads to a sig-
nificant gain of 2.9% and 4.0% compared to ECO-HC
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(a) Precision (at CLE = 20 pixels) under different values of γ.
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Fig. 4. Different values of bidirectional incongruity factor γ are tested on
UAVDT dataset. At γ = 0.03, both the precision and success rate reach
the highest scores.
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Fig. 5. Attribute-based evaluation between BiCF and other hand-crafted feature-based trackers. The numerical interval of the attribute axis is displayed
below the attribute name.

(0.462) and STRCF (0.457). On DTB70, BiCF provides
best precision score (0.657). Moreover, the best AUC score
(0.462) is also obtained by BiCF, followed by ECO-HC
(0.453) and CSR-DCF (0.438). On the UAVDT dataset,
BiCF provides the best precision score (0.716) compared to
Staple CA (0.695) and BACF (0.686). BiCF also achieves
the best AUC score (0.457), followed by BACF (0.433) and
SRDCF (0.419). In addition to excellent tracking perfor-
mance, the speed of the proposed BiCF tracker (45.4 FPS)
is sufficient for UAV real-time tracking, as shown in Table I.
Although KCF obtains the best tracking speed (651.1 FPS),
followed by fDSST (168.1 FPS) and DSST (106.5 FPS), their
precision and AUC scores are much lower than BiCF.

2) Attribute-based evaluation: The image sequences on
the UAV123@10fps, DTB70, and UAVDT datasets are an-
notated with 12, 11, and 9 different attributes, respectively.
We compare the proposed BiCF tracker with the other 14
hand-crafted feature-based trackers in all attributes. Fig. 5
illustrates the attribute-based comparisons based on the AUC
score on each dataset. Note that only the top 6 trackers
in the AUC score on each dataset are compared with the
BiCF tracker. The experimental results demonstrate that
BiCF outperforms favorably than other competing trackers in
most attributes, such as aspect ratio changes, camera/object
motion, viewpoint changes, scale variations, to name a few.
The results empirically demonstrate the bidirectional incon-
gruity can be applied to learn a robust filter efficiently to
counteract the object or background appearance variations
during tracking.

D. Comparison with deep-based trackers

Table II presents the precision (% at CLE = 20 pixels)
and success rate (% at AUC score) of the proposed BiCF
tracker and other deep-based trackers on the UAVDT dataset.
These deep-based trackers represent trackers that rely on
deep features or pre-trained deep networks. Note that only
the top 7 trackers on UAVDT performance are used for
comparison. The results demonstrate that BiCF achieves
the best precision (0.716) and obtains 2.4% and 2.8% gain
respectively than ECO (0.700) and UDT+ (0.697). In terms
of success rate, BiCF obtains the best AUC score of 0.457,

TABLE II
TRACKING PERFORMANCE AND SPEED COMPARISONS OF TOP 7

TRACKERS ON UAVDT. RED FONT INDICATES THE BEST RESULTS. ALL

RESULTS ARE GENERATED BY THE SAME COMPUTER.

ECO UDT+ TADT UDT MCCT DeepSTRCF BiCF

Prec. 70.0 69.7 67.7 67.4 67.1 66.7 71.6
Succ. 45.4 41.6 43.1 44.1 43.7 43.7 45.7

FPS 16.4 60.4 32.5 76.4 8.6 6.6 50.2
GPU X X X X X X 7

which outperforms ECO (0.454) and UDT(0.441) by 0.5%
and 3.4% respectively. Table II also gives the tracking speed
of competing trackers on the UAVDT dataset. UDT obtains
the best tracking speed (76.4 FPS), followed by UDT+ (60.4
FPS). The higher speed of these trackers benefits from the
GPU, while the tracking performance is lower than BiCF
both in precision and success rate, which runs at a single
CPU with a real-time speed of 50.2 FPS.

V. CONCLUSIONS

In this work, a bidirectional incongruity-aware correlation
filter, i.e., BiCF, is proposed to perform various types of
UAV object tracking tasks. By incorporating bidirectional
response-based error into the CF learning, the novel tracker
can sense the inter-frame information on the appearance
changes. Considerable experiments are conducted to verify
the proposed approach on 243 challenging aerial sequences
from three datasets. Extensive experimental results show that
the presented BiCF tracker outperforms favorably against
25 state-of-the-art tracking methods in accuracy, robustness,
and efficiency. Moreover, BiCF has the advantage of a
small computational burden and is suitable for performing
real-time UAV tracking missions. The results of BiCF will
further extend the development of bidirectional incongruity
suppression strategy in UAV visual tracking applications.
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