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Abstract
In recent years, the correlation filter (CF)-based method has significantly advanced in the tracking for unmanned aerial

vehicles (UAVs). As the core component of most trackers, CF is a discriminative classifier to distinguish the object from

the surrounding environment. However, the poor representation of the object and lack of contextual information have

restricted the tracker to gain better performance. In this work, a robust framework with multi-kernelized correlators is

proposed to improve robustness and accuracy simultaneously. Both convolutional features extracted from the neural

network and hand-crafted features are employed to enhance expressions for object appearances. Then, the adaptive context

analysis strategy helps filters to effectively learn the surrounding information by introducing context patches with the

GMSD index. In the training stage, multiple dynamic filters with time-attenuated factors are introduced to avoid tracking

failure caused by dramatic appearance changes. The response maps corresponding to different features are finally fused

before the novel resolution enhancement operation to increase distinguishing capability. As a result, the optimization

problem is reformulated, and a closed-form solution for the proposed framework can be obtained in the kernel space.

Extensive experiments on 100 challenging UAV tracking sequences demonstrate that the proposed tracker outperforms

other 23 state-of-the-art trackers and can effectively handle unexpected appearance variations under the complex and

constantly changing working conditions.

Keywords Visual tracking � Unmanned aerial vehicle (UAV) � Multi-kernelized correlators � Adaptive context analysis �
Dynamic weighted filters

1 Introduction

The breakthrough in intelligent vision-based techniques for

unmanned aerial vehicles (UAVs) has been paid more

attention recently and sparked a wide range of object

tracking methods to tackle specific issues. In practice, the

visual tracking for UAV can be applied in many fields, e.g.,

wildlife monitoring [28] and autonomous landing [23].

Considerable progress in correlation filter (CF)-based

tracking methods has been made in the last several years.

However, object tracking for UAV remains thorny due to

dramatic object appearance changes. These issues are

raised by several challenging factors [26, 36], including

object deformation, illumination variation, partial or full

occlusion, similar objects, and cluttered background.

Additionally, the operation in mid-air brings unique diffi-

culties such as mechanical vibrations, which severely

degrade the performance.

The current methods are still limited in some aspects.

One major weakness is that the search region of most

trackers only contains a small neighboring area around the

object to ensure low computational cost. According to the

circulant assumptions, boundary effects inevitably arise by

introducing the unreal samples in the training process,

which decreases the robustness of the tracker. Furthermore,

most proposed tracking approaches discard the continu-

ously updated filters. They merely use the information from

the latest frame to update the model, resulting in limited

knowledge of the historical information and easily getting

drifted when fast motion or occlusion happens.
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In the literature, some image measurements, e.g., lumi-

nance, contrast, and local structure, are shifting over time,

especially on the challenging UAV sequences. According

to different analysis theories, two types of full-reference

image quality metrics are applied in computer vision

applications [25, 29, 35]. On the one hand, the mathe-

matical-based image quality index, such as minimum mean

square error, can be applied in similarity assessment, while

these objective methods are vulnerable to appearance

variation [42]. On the other hand, studies conducted in

[16, 37] demonstrate that human vision system-based

metrics achieve much better performance than the afore-

mentioned metrics. Inspired by the applications of image

quality assessment in the generative tracking method [10],

an image quality index is introduced in this work specifi-

cally for UAV visual tracking. The image quality mea-

surement-based scheme is used to measure the similarity of

different context patches referring to the object, thus

improving the generalization to imaging scenarios

adaptively.

In this work, a novel tracking approach, i.e., MKCT

tracker, is proposed for UAV tracking to achieve advanced

performance. It includes the robust multi-kernelized cor-

relators with adaptive context analysis and dynamic

weighted filters. The similarity-based context learning

scheme is devised to fully utilize contextual information to

reinforce the sensitivity of the kernelized correlators. By

introducing multiple dynamic filters, the model can be

trained with historical information to avoid drift. More-

over, a resolution enhancement operation is used to

develop anti-interference ability by weakening noise and

sharpening the principal peak in the final response map.

The contributions of the proposed method are listed as

follows:

– A new tracking framework with multi-kernelized

correlators is introduced. In the training stage, different

features are employed with kernel methods and mapped

onto high-dimensional space, which improves the

encoding ability of the model.

– A novel adaptive context analysis scheme is developed.

It is the first time for the gradient magnitude similarity

deviation (GMSD) [37] to be employed in object visual

tracking as an image quality index. Combined with

captured surrounding patches, the GMSD-based

scheme can be used as a weighting measurement

referring to the object. Thus, contextual information is

thoroughly exploited to construct adaptive distractors

and achieve better robustness.

– A dynamic learning strategy is developed to employ

multiple filters. The influence of filters to different

degrees is taken into account by assigning time-

attenuated factors, which helps avoid over-fitting in

the training stage and achieve better performance

against dramatic appearance variations.

– A resolution enhancement operation for response maps

of different features is proposed to improve the

sensitivity in the detection stage. The output of the

correlators is more accurate and robust with suppressed

noise information and sharped main peaks during

operation.

The proposed tracking approach is adequately evaluated

and performs favorably against 23 other state-of-the-art

trackers, as shown in Fig. 1. To the best of the knowledge,

the proposed tracking method, i.e., MKCT tracker, has not

been designed and employed for UAV tracking applica-

tions in the literature.

The remainder of this work is structured as follows:

Sect. 2 covers the related works. Section 3 introduces the

details of the proposed MKCT tracker. Section 4 shows

qualitative and quantitative experiment results and

(a)

(b)

Fig. 1 Evaluation results of the proposed and state-of-the-art trackers.

a and b display the precision and success rate on the challenging

UAV image dataset [26], respectively. Red, green, and blue denote

the first, second, and third best performance among all trackers. In

addition, the trackers with bold fonts are the trackers based on deep

learning (color figure online)
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comparison with other state-of-the-art trackers. Section 5

presents conclusions and outlook for the future work.

2 Related works

2.1 Tracking with correlation filters

The CF-based trackers have been widely employed for

object tracking owing to high computational efficiency.

Many trackers, including the minimum output sum of

squared error [2], i.e., MOSSE tracker, kernelized corre-

lation filters [13, 14], discriminative scale space tracking

[4], co-trained kernelized correlation filters [41], and so on

[5, 22, 24, 32, 33], have applied CF framework. Never-

theless, the CF-based methods have a drawback in lacking

enough knowledge of the surrounding environment, which

easily leads to drift on the challenging UAV sequences.

Efforts have been made to improve the utilization of con-

textual information. For example, background-aware cor-

relation filter (BACF) [18] exploits background patches by

using the cropping operator to add real samples instead of

synthetic ones. Context-aware correlation filter (CACF)

[27] applied context patches into the training stage. With

fixed weights to diverse patches of information, these

trackers lack the generalization ability in the cluttered

environment. Besides, the poor encoding ability also limits

the distinguishing power of the tracker. More recently,

kernel cross-correlator (KCC) is presented in [32] to learn

kernelized filters to promote the representation of the

sample. However, the lack of context information and

multiple kernelized correlators limit the discriminative

ability of the tracker.

2.2 Tracking with multiple features

The performance of the tracker is highly dependent on the

expression of the tracking object. Two types of features,

i.e., hand-crafted features and convolutional features, are

widely used for object tracking. Hand-crafted features

including histograms of gradients (HOG) [9] and color

names (CN) [31] have been employed separately [4, 5, 14]

or in combination with different hand-crafted features

[1, 22] to enhance appearance representation. Despite their

speeds, the trackers employing hand-crafted features focus

on the shallow appearance model solely so that they are

vulnerable in complex UAV tracking environment. Com-

pared to hand-crafted features, using deep features from

convolutional neural networks can remarkably increase the

robustness of the trackers, which encouraged increasing

applications in visual tracking methods recently. Danell-

jan et al. [6] utilized different spatial information of the

convolutional features for training filters. Ma et al. [24]

proposed a tracker to represent the tracking object with

multi-level features from convolutional neural networks

(CNNs) to obtain both spatial and semantic information. In

[7], a learning discriminative convolution operators based

on the continuous spatial domain is proposed. However,

these trackers mainly rely on the appearance model of the

object and ignore surrounding information. In this work,

both ensembled hand-crafted and convolutional features

are utilized to exploit both appearance and semantic

information for representing the object and contextual

patches. With multiple features, the proposed tracking

approach can obtain optimum performance in the compli-

cated UAV scenarios.

2.3 Tracking with similarity metric

Under the complicated situations, it is difficult to cope with

serious issues caused by cluttered information. By utilizing

the context patches from surrounding information, the

object can be stressed to distinguish the object from the

background. Therefore, the similarity metrics between the

two samples can be employed to adopt as weighted factors

to exploit contextual information fully. In recent years,

different similarities including Euclidean distance [40],

Mahalanobis distance [38], and cross-bin metric [19] are

applied in tracking approaches. Some weighting metrics

[38, 40] are fixed without the online update, while other

methods [10, 19] can be adaptive to the object appearance

changes. However, these generative methods may result in

tracking failure when distractors from the background

bring interference information or share a similar appear-

ance model with the object. Different from existing

methods [18, 27], the GMSD index can effectively assess

the similarity between each context patch and the object by

capturing the local spatial characteristic. Above all, the

adaptive GMSD-based context analysis scheme can be

incorporated with a multi-kernelized correlators framework

to achieve superior performance on the occurrence of the

background clutter.

3 Proposed tracking method

3.1 Overview

In this section, the proposed robust multi-kernelized cor-

relators for UAV tracking with adaptive context analysis

and dynamic weighted filters, i.e., MKCT tracker, are

introduced. The main steps of the proposed tracking

method are shown in Fig. 2. From the start, the search

window of the object is extracted from the previously

estimated location and updated every frame. Additionally,

the neighboring four patches with adaptive GMSD-based
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importance are selected and added to filters training at the

interval. Accordingly, ensembled hand-crafted features

(fHOG [9] and CN [31]) and deep features extracted from

VGG-Net [30] are utilized for encoding the object and its

surrounding information. Moreover, they are incorporated

into the framework to generate kernelized correlators in

different kernel space. Besides, the multiple dynamic

weighted filters are joined in the training stage as external

restraints to avoid drift in the complex scenarios. There-

fore, the optimization problem is reformulated, and a

closed-form solution can be achieved accurately and

robustly concurrently. After obtaining response maps, the

outputs of the two kernelized correlators are fused and

processed by the proposed resolution enhancement opera-

tor to increase distinguishing power.

3.2 Multi-kernelized correlators framework

The novel proposed multi-kernelized correlators frame-

work is formulated based on the kernel method. For sim-

plicity, the vectorized image can be denoted as column

vectors x, z 2 RM . With a nonlinear kernel function

uð�Þ : RM ! RH ;H � M, the inner product between x and

zi can be mapped onto high-dimensional space. Then,

kernelized correlator can be denoted by:

Gaussian
kernelized
correlator

Polynomial
kernelized
correlator.

GMSD-based index

MIN MAX

Filter1 

Feature1

Feature encoding

Dynamic weighted filters

CN + fHOG Conv3-4

Patches extraction

+

-

Resolution
enhancement

operation

Correlators output

Frame Frame

Training

Feature2

Filter2 

Final response map

Object patch

Context patchDetection

Fig. 2 Main workflow of the proposed MKCT tracker. The object

patch is extracted every frame, while the context patches near the

object are extracted every Dc frame (Dc ¼ 10 in this work) from the

search areas, which are obtained by the predicted position in the

previous frame. The extracted patches are encoded by ensembled

hand-crafted features as well as convolutional features before

adaptive GMSD-based context analysis. Further, the model is trained

with dynamic weighted filters jointly to construct different kernelized

correlators. As a result, the response map corresponding to each

correlator is processed by the resolution enhancement operation to

sharpen the peak. Finally, the tracking result can be achieved by

searching for the maximum value in the enhanced response map.

Additionally, êw�
nð1Þ, êw�

nð2Þ and êw�
nðTÞ denote the 1st, 2nd, and Tth

latest selected filters in filter pool (color figure online)
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jðx; ziÞ ¼ uðxÞTuðziÞ; ð1Þ

where the superscript ð�ÞT denotes the transpose of a vector,

and further jðx; ziÞ 2 R avoids calculation redundancy for

high-dimensional features. Besides, the sample-based

vector zi 2 RM is generated from the test sample z by the

transform function T ð�Þ, i.e., zi 2 T ðzÞ. As a result, the

sample-based vectors set can construct the kernel vector

kxz ¼ ½kxz1 ; . . .; kxzn �T, where kxzi is used to represent jðx; ziÞ.
Hence, the kernelized cross-correlation output can be

denoted by:

Ĉðx; zÞ ¼ k̂xz � ŵ�; ð2Þ

where � and superscript ð�Þ� denote the element-wise

product and complex conjugate operation, respectively.

The superscript �̂ indicates the discrete Fourier transform of

a vectorized image, i.e.,

x̂ ¼ Fx: ð3Þ

Finally, the pattern of the training sample will be encoded

in w, and training sample x can be predicted as a result of

the correlation output Ĉðx; zÞ.
Suppose that N features are utilized to represent tracking

object. Accordingly, the multi-kernelized correlators

framework, as well as dynamic weighted filters in the

Fourier domain, can be formed by minimizing the regres-

sion target:

Êðŵ�Þ ¼
X

N

n¼1

�

�

�Ĉnðxn0; xn0Þ � ŷn
�

�

2

2
þ k1

�

�ŵ�
n

�

�

2

2

þ k2
X

S

s¼1

�

�

�fnsĈnðxns; xnsÞ
�

�

�

2

2

þ
X

T

t¼1

�

�

�ct½ŵ�
n � êw�

nðtÞ�
�

�

�

2

2

�

;

ð4Þ

where xn0 and xns are the vectorized image patch of the

object and context patches, respectively, in the nth feature.

Then, Ê is an error measured by the correlation output of

xn0 2 RM and desired output yn 2 RM . ŵ�
n 2 RM denotes

the correlation filter corresponding to nth feature in the

Fourier domain. k1 and k2 are regularization factors to

control the filters and correlation output of context patches,

respectively. S is the number of context patches which are

extracted from the top, bottom, left, and right directions

close to the object. These patches are considered as hard

negative samples, so their desired correlation output to

each sample is zero. Then, a GMSD-based importance

factor fns is proposed to evaluate the different importance

of context patches at an interval Dc. Consequently, T is the

number of selected weighted filters ½ êw�
nð1Þ; . . .; êw

�
nðTÞ� and

ct is the penalty factor with time-attenuated property to

construct the dynamic restraints and update at an interval

Df to prevent drift when subjected to appearance changes

dramatically.

Remark 1 Different correlators are trained and updated in

the kernel space of different dimensions, i.e., the samples

represented by the ensembled hand-crafted features are

trained with the Gaussian kernel function, and the samples

represented by the deep features are trained with the

polynomial kernel. Besides, k2 is a factor used to construct

adaptive context constraints.

Because of the mutual independence of the equations

corresponding to different features, the original objective

function Êðŵ�Þ in Eq. (4) can be reformulated subproblem

Ên, which is defined as:

Ên ¼
�

�Ĉnðxn0; xn0Þ � ŷn
�

�

2

2
þ k1

�

�ŵ�
n

�

�

2

2

þ
X

S

s¼1

�

�

�FnsĈnðxns; xnsÞ
�

�

�

2

2

þ
X

T

t¼1

�

�

�ct½ŵ�
n � êw�

nðtÞ�
�

�

�

2

2
;

ð5Þ

where the regularized factor for each context patch Fns is

defined as follows:

Fns ¼
ffiffiffiffiffi

k2
p

fns ðs ¼ 1; . . .; SÞ; ð6Þ

where the importance factor fns to each patch s is intro-

duced in detail in Sect. 3.3.

Therefore, the solution to the optimization problem

Eq. (5) can be calculated by setting the first derivative of

ŵ�
n to zero, i.e.,

oÊn

oŵ�
n

¼ 0: ð7Þ

Since all the operations in Eq. (7) are performed in ele-

ment-wise, as a result, a closed-form solution to ŵ�
n can be

achieved by:

ŵ�
n ¼

k̂
xn0xn0 � ŷn þ

PT
t¼1 c2t êw nðtÞ

h i

k̂
xn0xn0 � k̂

xn0xn0� þ
PT

t¼1 ct
2 þ k1 þ Bn

; ð8Þ

where the fraction operator, i.e., �
� , denotes element-wise

division and Bn is defined by (a detailed derivation is in

Appendix 5):

Bn ¼
X

S

s¼1

Fns
2k̂

xnsxns � k̂
xnsxns�

� �

: ð9Þ
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3.3 Adaptive GMSD-based context analysis
scheme

In most cases, the introduction of excessive context

information undermines the discriminative power of the

tracker, especially on the cluttered background. Therefore,

the adaptive scheme measuring the importance of different

patches referring to the object, i.e., the GMSD-based

similarity index, is applied to utilize sample information

and improve tracking accuracy.

The importance factor to each patch fns is calculated as

follows:

fns ¼
1

Cns

expð1� GMSDnsÞ ð10Þ

where Cns is the regularization term and GMSDns is the

context similarity referring to center patch.

In this work, the sample similarity is defined by GMSD

[37] instead of assigning equal importance or using the

Euclidean distance. The GMSD index is defined as:

GMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

P

X

P

i¼1

ðGMSðiÞ � GMSMÞ2
v

u

u

t ð11Þ

where GMS and GMSM represent gradient magnitude

similarity map at location i and gradient magnitude simi-

larity mean to the total number of pixels P, respectively,

which are computed as follows:

GMSðiÞ ¼ 2mrðiÞmdðiÞ þ c

m2
r ðiÞ þm2

dðiÞ þ c
; ð12Þ

and

GMSM ¼ 1

P

X

P

i¼1

GMSðiÞ ; ð13Þ

where r and d are the horizontal and vertical gradient

images yielded by convolving the reference and compared

images with Prewitt filters hx and hy along horizontal and

vertical directions. Besides, mrðiÞ and mdðiÞ are the gra-

dient magnitudes of r and d at location i, which are com-

puted as follows:

mrðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr� hxÞ2ðiÞ þ ðr� hyÞ2ðiÞ
q

mdðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd� hxÞ2ðiÞ þ ðd� hyÞ2ðiÞ
q

8

>

>

<

>

>

:

; ð14Þ

where � denotes the convolution operation.

Besides, for the context patches, learning at each frame

may reduce the discriminative power of tracker, which is

called an over-fitting phenomenon. Therefore, learning

with adaptive GMSD-based analysis scheme updates at an

equal interval of Dc. When the surrounding patches are not

taken into account, context-aware regularization term k2 is
set to zero, i.e., Bn ¼ 0, to train the proposed framework

Eq. (8) as follows:

ŵ�
n ¼

k̂
xn0xn0 � ŷn þ

PT
t¼1 c2t êwnðtÞ

h i

k̂
xn0xn0 � k̂

xn0xn0� þ
PT

t¼1 ct
2 þ k1

: ð15Þ

Remark 2 In this work, the GMSD index can effectively

measure the importance of each patch comparing to the

object patch. As shown in Fig. 3, less importance will be

assigned to the patch when it is more similar to the object.

Thus, the proposed scheme can contribute to suppressing

distractors adequately and construct the adaptive context

restraints to ensure the robustness of the tracker. To avoid

over-fitting, the number of context patches S is 4, and the

interval of context patches Dc is set to 10.

3.4 Combination of multiple features

In this work, the features of object appearance, i.e., color,

texture, and semantic information which, respectively,

correspond to features of CN [31], HOG [3], and deep

features extracted from CNN are selected to represent

extracted patches.

Original patches

Similarity map

1

0

MAX

MIN

2

3

4

1

Context importance

Weighting
scheme

Fig. 3 Adaptive GMSD-based context analysis scheme. The similar-

ity is utilized to compute the GMSD index of each context patch

referring to object patch. Different importance of context patches is

denoted by rectangles with different colors (color figure online)

Neural Computing and Applications

123

Author's personal copy



3.4.1 Object representation with ensembled hand-crafted
features

In general, HOG computes on a dense grid of uniformly

spaced cells in the patch and has the advantage against

local geometric variance and photometric transformations.

Besides, the integration of spatial sampling and local

photometric normalization permits the body movement of

tracking object to be ignored so that HOG can be robust to

illumination variation.

In addition to texture characteristics, CN can be used to

represent the object in terms of multiple color attributes.

Compared to the original RGB expression, CN feature

encoded the patches with the preselected set of 11 lin-

guistic color labels to exploit the essential color informa-

tion. It can tackle issues about object deformation and

variation in shape through the perception of the object

color.

The two features, i.e., HOG and CN, focus on the tex-

ture and color information of the patches; therefore, they

can strengthen the comprehensive representation of the

appearance model complementarily. For implementation,

the two hand-crafted features are ensembled as one feature

to encode the extracted center as well as the context

patches.

3.4.2 Object representation with convolutional features

Compared to hand-crafted features, convolutional neural

networks trained on the large-scale ImageNet dataset with

the category-level label have the semantic-aware capabil-

ity. Thus, the output of the convolutional layer with high-

level encoding capability is employed after removing the

fully connected layers in this work. Moreover, resizing

each feature map to a fixed larger size with bilinear

interpolation alleviates the issue of resolution degradation

corresponding to the original patch.

Remark 3 Figure 4 shows the multiple features utilized in

the proposed method. The fast version of HOG, i.e., fHOG

[9], which has no information loss, is applied in this work.

For CN, the mapping method proposed in [5] is employed

to transform the RGB space into the color names space,

which is an 11-dimensional color representation, i.e., black,

blue, brown, gray, green, orange, pink, purple, red, white,

and yellow. For deep features, VGG-Net [30] is used to

extract the convolutional features in this work. Concerning

the calculation complexity, the features extracted from the

conv3-4 layer are only used to express the object.

3.5 Dynamic weighted filters training strategy

In this section, the multiple dynamic filters with time-at-

tenuated factors are introduced in the model training stage

to cope with arbitrary object appearance changes.

From the beginning, the new filters are selected as

ew�
nð1Þ to add into the pool at an interval Df . Correspond-

ingly, the remaining filters further from the current frame

continue to be retained and passed backwards one after the

other, i.e., ew�
nðt � 1Þ in the kth frame is equal ew�

nðtÞ in the

ðk þ Df Þth frame. The maximum number of dynamic

weighted filters is T, that is, the historical information in

the latest ðDf 	 TÞ frames are taken into account in the

filter pool and the filters furthest from the current frame

will be discarded. Besides, the penalty factor ct is assigned
to different filters ew�

nðtÞ with regard to the time-attenuated

influence, which is defined as follows:

ct ¼
Cf

2t
; ð16Þ

where Cf is the multi-filter regularization term and t is the

ordinal number of the tth filter in the filter pool close to the

current frame filter.

Figure 5 shows that multi-filters are added as dynamic

restraints to guarantee accurate detection in a continuous

video sequence.

Remark 4 Generally, most trackers ignore the historical

information of the filters, and the update of the model

exclusively depends on the appearance information chan-

ges. In the complex environment, the model cooperated

with the filter pool will maintain similarity with the past

information to achieve robustness. Unlike the proposed

method in [21], multiple dynamic filters with attenuated

factors are taken into account in this framework, and a

closed-form solution is obtained to ensure accurate model

updating. In this work, T ¼ 5 weighted filters are training

as restraints, and the update interval for multi-filters Df is

set to 2 and the multi-filter regularization term Cf is set to

1.

3.6 Resolution enhancement operation

To increase model sensitivity, a simple yet effective

strategy to enhance different correlators’ responses is

designed in this work to achieve better tracking accuracy.

The response map RHC and RCNN can be separately

enhanced by following resolution enhancement operator

(REO) which is defined as:

Sij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðR2
ijÞ �

X

N

i;j¼1

R2
ij

v

u

u

t ; ð17Þ
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where Rij is the original element in ith row, jth column of

response map R, and Sij is the element in ith row, jth col-

umn of enhanced response map S after operation, and the

enhancement function rð�Þ is defined as:

rðR2
ijÞ ¼

bR
2
ij

PN
i;j¼1 b

R2
ij

; ð18Þ

where b is the base coefficient.

Figure 6 shows that the peaks on both response maps

after resolution enhancement can assist in realizing accu-

rate and robust object detection.

For the consequent response fusion, the enhanced

response maps SHC and SCNN are combined to employ their

complementary ability to localize object. Since the object

appearance is changing over time, to improve the robust-

ness of multi-kernelized correlators, an online adaptation

strategy is used. At frame k, the model is updated with

training rate g as follows:

ŵ
ðmodelÞ
k ¼ ð1� gÞŵk�1 þ gŵk

k̂
xxðmodelÞ
k ¼ ð1� gÞk̂xxk�1 þ gk̂xxk

; ð19Þ

where subscript k and k � 1 denote the current frame and

the model learned in the last update, respectively.

Remark 5 In order to adapt to appearance change, the

learning rate g is set to 1	 10�2 and kept the same in the

Ensembled hand-crafted features

Original image

Pixel-wise feature maps

NCGOHf

……

……

Deep features Conv3-4 layer from VGG-Net

Fig. 4 Feature representations of the original image. Two different features are utilized to represent the original image, which include the

ensembled hand-crafted features and convolutional feature extracted from VGG-Net (color figure online)

Updating
filters 

Current filter

Filter pool

Model training Detection

Selected filters 

Non-selected filters 
Current filters 

Timeline

Fig. 5 Dynamic weighted filters training strategy. The filter pool

updates at an interval Df . According to the distance from the current

frame, the penalty factor is assigned to different filters. The updating

filters with blue diamond denotes selected filters in overall tracking

process (color figure online)

MIN

MAX
Original

response map
Enhanced

response map

R
E
O

Fig. 6 Resolution enhancement operation. The enhancement of final

response map corresponding to each correlator leads to less noise and

sharper peak (color figure online)
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evaluation stage. Details of the MKCT tracker can be seen

in Algorithm 1.

4 Experiment and evaluation

4.1 Implementation details

For the proposed MKCT tracker, it is implemented in

MATLAB 2017b. The same computer generates all the

experimental results with Intel i7 processor (3.70 GHz), 32

GB RAM, and NVIDIA Quadro 2000 GPU. The Mat-

ConvNet toolbox is used for extracting the output of the

conv3-4 layer from the VGG-Net [30].

Following the basic settings in KCC [32], the search

window of both center and context patches is extracted

according to the object size whose area threshold is

50 pixels	 50 pixels and then processed with a Hanning

window. The ensembled hand-crafted features containing

fHOG and CN, as well as deep features extracted from the

conv3-4 output of VGG-Net, are used to represent the

patch separately. For the response map corresponding to

each kernelized correlator, the result is enhanced by REO.

Besides, Table 1 shows additional parameters utilized in

this work. All parameters are fixed in the following

experiments.

Remark 6 The source code and related UAV tracking

video of the proposed MKCT tracker can be found at

https://github.com/vision4robotics/MKCT-tracker and

https://youtu.be/duSk2XMf5O4. Besides, Fig. 7 shows

examples of UAV tracking results.

4.2 Evaluation criteria

On the whole, precision and success are used to evaluate

the performance of the tracking approach. The center

location error (CLE) and the intersection over union (IoU),

which are based on the one-pass evaluation protocol, can

be employed to assess the two aspects above.

On the one hand, the CLE is defined as the distance of

the bounding box center between the tracker and ground

truth in pixel-wise, which is used to display the precision

plot (PP). The threshold at 20 pixels is commonly used to

rank the precision of each tracker.

On the other hand, the IoU of the tracker bounding box

and ground truth bounding box can be computed to display

the success plot (SP). Generally, the area under the curve

(AUC) of SPs is selected to rank the success rate of each

tracker.

4.3 Evaluation with state-of-the-art trackers

Based on the mentioned criteria, the performances of the

proposed tracker can be demonstrated. The MKCT tracker

is extensively evaluated on 100 UAV tracking sequences as

challenging UAV image dataset with other 15 state-of-the-

Table 1 Main parameters in the MKCT tracker

Parameter Value

Update interval for multi-filters Df 2

Number of multi-filters T 5

Number of context patches S 4

Interval for context learning Dc 10

Base of REO b 3

Model regularization term k1 1	 10�4

Context-aware regularization term k2 1/256

Multi-filter regularization term Cf 1
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art trackers based on hand-crafted features, i.e., STRCF

[21], MEEM [39], DCF_CA, Staple_CA, SAMF_CA [27],

MCCT-H [33], MUSTER [15], SRDCF [6], BACF [18],

KCC [32], Struck [12], SAMF [22], DCF, KCF [14], and

DSST [4], and 8 trackers based on deep learning, i.e.,

MCCT, CF2 [24], PTAV [8], CoKCF [41], DeepSTRCF,

UDT, UDT? [34], and MCPF [43].

Remark 7 Objective evaluations of the state-of-the-art

tracking approaches are performed by utilizing the open-

source codes as well as default parameters provided by the

authors.

4.3.1 Evaluation with trackers based on hand-crafted
features

Figures 8 and 9 show PPs and SPs of MKCT tracker and

15 trackers based on hand-crafted features. The plots

demonstrate that the proposed tracking approach achieves

the highest precision score (0.718) and the highest AUC

score (0.495). The proposed MKCT tracker, which

employs the convolutional feature, has favorably outper-

formed trackers using only hand-crafted features, thereby

effectively ensuring the stability in UAV object tracking

tasks.

4.3.2 Evaluation with trackers based on deep learning

The proposed MKCT tracker is also compared to 8 state-

of-the-art trackers based on deep learning on the same

challenging UAV image dataset. These deep-based meth-

ods include trackers using end-to-end deep neural network

architectures, i.e., UDT, UDT?, and PTAV, or integrating

convolutional features from a pre-trained deep network,

i.e., CoKCF, CF2, MCPF, MCCT, DeepSTRCF, and
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Fig. 7 Examples of UAV tracking results. The first, second, third, and fourth columns show the group1_3, car9, boat9, and wakeboard8 image

sequences (color figure online)
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Fig. 8 PPs of MKCT tracker and 15 hand-crafted feature-based

trackers on the challenging UAV image dataset [26]. MKCT tracker

shows superiority in precision score, followed by STRCF and

MEEM (color figure online)
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MKCT. As shown in Table 2, the MKCT tracker (0.718)

has an advantage of 3.6% over the second and third best

tracker UDT? (0.693) and PTAV (0.693) in precision, as

well as an advantage of 0.8% and 2.9% over the

DeepSTRCF (0.491) and MCCT (0.481) in AUC score.

4.3.3 Evaluation on 12 attributes and tracking speed

The trackers with the top 10 precision scores on the chal-

lenging UAV image dataset [26], i.e., MKCT, UDT?,

PTAV, DeepSTRCF, MCCT, MCPF, STRCF, CF2,

CoKCF, and MEEM, are selected for attribute and tracking

speed evaluation.

Attribute-based comparison The tracking attributes can

be classified as follows: aspect ratio change (ARC), back-

ground clutter (BC), camera motion (CM), fast motion

(FM), full occlusion (FOC), illumination variation (IV),

low resolution (LR), out of view (OV), partial occlusion

(POC), scale variation (SV), similar object (SOB), and

viewpoint change (VC) [26]. Figures 10 and 11 show the

precision and success plots with respect to different attri-

butes. For precision, the MKCT tracker favorably outper-

forms other state-of-the-art trackers in all attributes except

for FM. In terms of success rate, MKCT exhibited the best

performance except for FM, OV, and FOC. In summary,

the quantitative attribute-based experiments show that the

MKCT tracker ranks No. 1 in general among all trackers.

Tracking speed comparison These 10 trackers are fur-

ther evaluated in terms of the tracking speed. As shown in

Table 3, the UDT? achieves the fastest tracking speed,

followed by STRCF based on hand-crafted features and the

proposed MKCT tracker. Although UDT? uses the fewest

time to process every frame, its overall and attribute-based

tracking performance is inferior to the MKCT tracker,

which is implemented in MATLAB without engineering

optimizations.

4.4 Extensive evaluations of the proposed
method

In this section, quantitative and qualitative experiments are

conducted to verify the effectiveness of the MKCT tracker.

4.4.1 Ablation studies

The proposed tracking approach with different modules is

evaluated on the challenging UAV image dataset [26].

First, KCC [32] is considered as a special case of MKCT

with N ¼ 1, S ¼ 0, and T ¼ 0. Second, MKCT-HC is the

proposed method that utilized the hand-crafted feature

only. Third, eMKCT is a variant of MKCT whose features

and weighted filters selection are the same as those adopted

by MKCT but with fixed context importance. Finally,

MKCT-NR is the MKCT without the final enhancement

operation before the response fusion.

As shown in Fig. 12, MKCT-NR outperforms eMKCT,

MKCT-HC, and KCC with large margins in overall per-

formance. The novel resolution enhancement function of

MKCT improves the performance with the average preci-

sion score of 2:9% and the average AUC score of 2:3% to

MKCT-NR and significantly outperforms eMKCT and

MKCT-HC by 4:4% and 7:4% in precision score and 4:3%

and 5:2% in AUC score.

4.4.2 Key parameter analysis

To validate the effectiveness of the regularization terms on

the overall performance, different k2 and Cf are further

analyzed on the same challenging UAV image dataset.
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Fig. 9 SPs of MKCT tracker and 15 hand-crafted feature-based

trackers on the challenging UAV image dataset [26]. MKCT tracker

shows superiority in success rate, followed by STRCF and MCCT-

H (color figure online)

Table 2 Overall performance comparisons of MKCT tracker and 8

state-of-the-art trackers based on deep learning on the challenging

UAV image dataset

Tracker Published in Prec. Succ.

UDT CVPR2019 0.596 0.428

UDT? CVPR2019 0.693 0.475

PTAV ICCV2017 0.693 0.475

CoKCF PR2017 0.634 0.396

CF2 ICCV2015 0.635 0.431

MCPF TPAMI2017 0.674 0.437

MCCT CVPR2018 0.679 0.481

DeepSTRCF CVPR2018 0.686 0.491

MKCT Ours 0.718 0.495

The bold, italic, and bolditalic fonts indicate the first, second and third

place in terms of precision and success rate, respectively
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During the analysis of the parameters, k2 ranges from 0 to

1/128 with a step size of 1/1024 and Cf ranges from 0 to

1.2 with a step size of 0.2.

The regularization parameter k2 determines the degree

of GMSD-based constraints imposed by the adaptive sur-

rounding context: The lower the k2 is set, the less the

attention is paid to the possible inference caused by the

cluttered contexts. Likewise, the regularization parameter

Cf determines the degree of adaptive temporal constraints

imposed by dynamic weighted filters in the training stage:

The lower the Cf is set, the less the focus is kept on the past

filters. MKCT with k2 = 0 and Cf = 0 equals the filters

trained without the consideration of changing context

information and dynamic historical information, respec-

tively. Figure 13 shows when Cf is fixed and k2 is set over

0, MKCT effectively improves the precision score and

reaches the peak (0.718) at k2 = 1/256. Similarly, when k2
is fixed and Cf is set over 0, MKCT maintains a advanced

precision level and reaches the highest score (0.718) at Cf

= 1. Thus, k2 ¼ 1=256 and Cf ¼ 1 are chosen to demon-

strate the state-of-the-art performance on the challenging

UAV image dataset.

4.4.3 Time analysis

To analyze the time cost, one of the challenging UAV

image datasets, i.e., group1_1 with 445 frames, is selected.

Table 4 shows that each stage of MKCT is operated within

acceptable time, and the proposed tracker spends a total of

45.41s with speed at 9.8 FPS in the sequence, which proves
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Fig. 10 PPs of top 10 trackers on different attributes with the challenging UAV image dataset [26] (color figure online)
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its efficiency. Due to the introduction of multiple features

and adaptive context analysis strategy, the MKCT tracker

reaches an average speed at 9.4 FPS on the challenging

UAV image dataset.

Remark 8 The MKCT tracker is currently implemented on

MATLAB without optimization, and its efficient applica-

tion can be achieved with the help of parallel computation

and optimization strategy on GPU. Additionally, in the

real-world UAV tracking tasks, the multirotor can carry a

larger payload with high-performance GPU and CPU,

which will significantly improve the efficiency of the

tracker.

4.5 Limitations and future work

Though the MKCT tracker has performed better against

other state-of-the-art trackers in the overall evaluation,

it still has certain limitations during the UAV tracking.

Figures 10 and 11 show that the MKCT tracker has

obtained inferior precision performance in FM and lower

success rate in the FM, OV, and FOC attributes compared

to other trackers.

Therefore, two challenging sequences in Fig. 14, in

which MKCT fails to track the object, are used to inves-

tigate the underlying causes and discuss future improve-

ments. In the sequence car7, the noisy background contains

a similar object and interfering trees, which cause the

proposed method to drift from the object in Frame # 75. In
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Fig. 11 SPs of top 10 trackers on different attributes with the challenging UAV image dataset [26] (color figure online)
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such cases, MKCT can combine the motion information in

[11] and the variable aspect ratio module introduced in [20]

to solve these problems. In the sequence person14_1, the

tracked person is initialized with a low-resolution bounding

box. From Frame # 51 to # 65, the person moved quickly

into the pavilion, resulting in full occlusion. Like most CF-

based methods, MKCT can hardly detect the disappearance

and reappearance of the tracked object due to the lack of

re-detection modules such as those used in MEEM and

TLD [17]. We strongly believe the MKCT can retrieve

objects after returning to the field of view by adding a re-

detection scheme, thereby further improving performance.

5 Conclusion and outlook

In this work, the robust tracking approach, i.e., MKCT

tracker, is presented for UAV to achieve the state-of-the-art

performance in complicated situations. Both the hand-

crafted and convolutional features are utilized for training

with dynamic weighted filters in kernel space. Thanks to

the adaptive GMSD-based analysis scheme, the object and

context patches are adequately exploited to reinforce the

capability to distinguish the object from the background.

Table 3 Millisecond per frame (MSPF) and average frame per second

(FPS) of top 10 trackers on the challenging UAV image dataset [26]

Trackers MSPF FPS

Hand-crafted features MEEM 126.6 7.9

STRCF 49.5 20.2

Deep learning UDT? 25.5 39.2

PTAV 212.8 4.7

CoKCF 416.7 2.4

CF2 161.3 6.2

MCPF 1724.1 0.6

MCCT 1428.6 0.7

DeepSTRCF 217.4 4.6

MKCT 106.4 9.4

The bold, italic, and bolditalic fonts indicate the first, second, and

third place
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Fig. 12 Ablation study of the proposed MKCT tracker on the

challenging UAV image dataset. The overall results demonstrate the

effective improvement in each module (color figure online)
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Fig. 13 Effect of context-aware regularization term k2 and multi-filter

regularization term Cf on the challenging UAV image dataset. When

k2 and Cf are set more than 0, both key parameters contribute to the

overall performance of MKCT tracker

Table 4 Time cost of the proposed MKCT in each stage on the

sequence group1_1 with 445 frames

Stage Time (s) Ratio (%)

Object patch extraction and representation 26.22 57.7

Context patches extraction and representation 2.99 6.6

CF training with different kernels 8.16 18.0

Response generation and fusion 1.60 3.5

New location prediction 1.35 3.0

Other operations 5.09 11.2

Total time 45.41 100.0

# 000001 # 000075 # 000125

# 000001 # 000051 # 000070

Fig. 14 Failure cases of the proposed method from sequences car7

(first row) and person14_1 (second row), where the red and green

bounding boxes denote our tracking result and ground truth (color

figure online)
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Besides, a filter pool is constructed with dynamic weight-

ing filters and updates at a frequency to make better use of

historical information during the model update to ensure

model robustness. Moreover, the REO is capable of

sharpening the peak on the response map effectively over

time. Consequently, extensive and in-depth experiments

are conducted on 100 challenging UAV image sequences.

The extensive experimental results show that the proposed

MKCT tracker favorably outperforms 23 state-of-the-art

trackers, including 15 trackers based on hand-crafted fea-

tures and 8 trackers based on deep learning.

In the future, the proposed methods, including adaptive

GMSD-based context analysis scheme and dynamic

weighted filters strategy, can be generalized to other CF-

based trackers like MCCT [33] and STRCF [21]. Besides,

by incorporating our proposed strategies with more robust

and lightweight convolutional features or similarity met-

rics, the performance of tracking methods for UAVs can be

further improved. We believe that with our proposed

method, a CF-based tracking framework can open the door

to more extensive applications and more in-depth resear-

ches for UAV.
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Appendix

In this section, a more detailed derivation from Eq. (5) to

Eq. (8) is presented.

Because all operations in the Fourier domain are per-

formed element-wise, each element of ŵ�
n (indexed by u)

can be solved independently, and Eq. (5) can be decom-

posed as the subproblem Ênu, which is defined as follows:

Ênu ¼
�

�K̂
n0

u ŵ�
nu � ŷnu

�

�

2

2
þ k1

�

�ŵ�
nu

�

�

2

2
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�
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�
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X
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; ð20Þ

where K̂
n0

u ¼ k̂
xn0xn0
u and K̂

ns

u ¼ k̂
xnsxns
u are used to simplify

the denotation. Then, Eq. (20) can be expanded according

to the property of the vector operation, that is equivalent to
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Therefore, the solution to the optimization target can be

calculated by setting the first derivative of ŵ�
nu to zero, i.e.,

oÊnu

oŵ�
nu

¼ oA1

oŵ�
nu

þ oA2

oŵ�
nu

þ oA3

oŵ�
nu

þ oA4

oŵ�
nu

¼ 0 : ð22Þ

Hence, Eq. (22) can be reformulated as follows:
h

K̂
n0�
u K̂
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u þ
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ct
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u ŷ�nu þ
XT

t¼1

h

ct
2
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A closed-form solution to ŵ�
nu can be obtained:

ŵ�
nu ¼

K̂
n0

u ŷ�nu þ
PT

t¼1

h

ct
2
êwnuðtÞ

i
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which is the sub-solution of ŵ�
n in Eq. (8). h
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